Design, analysis and experimental evaluation of block based transformation in MFCC computation for speaker recognition
نویسندگان
چکیده
Standard Mel frequency cepstrum coefficient (MFCC) computation technique utilizes discrete cosine transform (DCT) for decorrelating log energies of filter bank output. The use of DCT is reasonable here as the covariance matrix of Mel filter bank log energy (MFLE) can be compared with that of highly correlated Markov-I process. This full-band based MFCC computation technique where each of the filter bank output has contribution to all coefficients, has two main disadvantages. First, the covariance matrix of the log energies does not exactly follow Markov-I property. Second, full-band based MFCC feature gets severely degraded when speech signal is corrupted with narrow-band channel noise, though few filter bank outputs may remain unaffected. In this work, we have studied a class of linear transformation techniques based on block wise transformation of MFLE which effectively decorrelate the filter bank log energies and also capture speech information in an efficient manner. A thorough study has been carried out on the block based transformation approach by investigating a new partitioning technique that highlights associated advantages. This article also reports a novel feature extraction scheme which captures complementary information to wide band information; that otherwise remains undetected by standard MFCC and proposed block transform (BT) techniques. The proposed features are evaluated on NIST SRE databases using Gaussian mixture model-universal background model (GMM-UBM) based speaker recognition system. We have obtained significant performance improvement over baseline features for both matched and mismatched condition, also for standard and narrow-band noises. The proposed method achieves significant performance improvement in presence of narrow-band noise when clubbed with missing feature theory based score computation scheme. Crown Copyright 2011 Published by Elsevier B.V. All rights reserved.
منابع مشابه
تشخیص لهجه های زبان فارسی از روی سیگنال گفتار با استفاده از روش های استخراج ویژگی کارآمد و ترکیب طبقه بندها
Speech recognition has achieved great improvements recently. However, robustness is still one of the big problems, e.g. performance of recognition fluctuates sharply depending on the speaker, especially when the speaker has strong accent and difference Accents dramatically decrease the accuracy of an ASR system. In this paper we apply three new methods of feature extraction including Spectral C...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملAllpass modelling of Fourier phase for speaker verification
This paper proposes features based on parametric representation of Fourier phase of speech for speaker verification. Direct computation of Fourier phase suffers from phase wrapping and hence we attempt parametric modelling of phase spectrum using an allpass (AP) filter. The coefficients of the AP filter are estimated by minimizing an entropy based objective function motivated from speech produc...
متن کاملCombining amplitude and phase-based features for speaker verification with short duration utterances
Due to the increasing use of fusion in speaker recognition systems, one trend of current research activity focuses on new features that capture complementary information to the MFCC (Mel-frequency cepstral coefficients) for improving speaker recognition performance. The goal of this work is to combine (or fuse) amplitude and phase-based features to improve speaker verification performance. Base...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Speech Communication
دوره 54 شماره
صفحات -
تاریخ انتشار 2012